The Human Genome Project (HGP) is an international scientific research project with a primary goal of determining the sequence of chemical base pairs which make up DNA, and of identifying and mapping the approximately 20,000–25,000 genes of the human genome from both a physical and functional standpoint.
The project began in October 1990 and was initially headed by Ari Patrinos, head of the Office of Biological and Environmental Research in the U.S. Department of Energy’s Office of Science. Francis Collins directed the National Institutes of Health National Human Genome Research Institute efforts. A working draft of the genome was announced in 2000 and a complete one in 2003, with further, more detailed analysis still being published. A parallel project was conducted outside of government by the Celera Corporation, which was formally launched in 1998. Most of the government-sponsored sequencing was performed in universities and research centres from the United States, the United Kingdom, Japan, France, Germany. Researchers continue to identify protein-coding genes and their functions; the objective is to find disease-causing genes and possibly use the information to develop more specific treatments. It also may be possible to locate patterns in gene expression, which could help physicians gleen insight into the body’s emergent properties.
While the objective of the Human Genome Project is to understand the genetic makeup of the human species, the project has also focused on several other nonhuman organisms such as E. coli, the fruit fly, and the laboratory mouse. It remains one of the largest single investigative projects in modern science.
The Human Genome Project originally aimed to map the nucleotides contained in a human haploid reference genome (more than three billion). Several groups have announced efforts to extend this to diploid human genomes including the International HapMap Project, Applied Biosystems, Perlegen, Illumina, J. Craig Venter Institute, Personal Genome Project, and Roche-454.
The “genome” of any given individual (except for identical twins and cloned organisms) is unique; mapping “the human genome” involves sequencing multiple variations of each gene. The project did not study the entire DNA found in human cells; some heterochromatic areas (about 8% of the total genome) remain un-sequenced.
Project goals were to
- identify all the approximately 20,000-25,000 genes in human DNA,
- determine the sequences of the 3 billion chemical base pairs that make up human DNA,
- store this information in databases,
- improve tools for data analysis,
- transfer related technologies to the private sector, and
- address the ethical, legal, and social issues (ELSI) that may arise from the project.